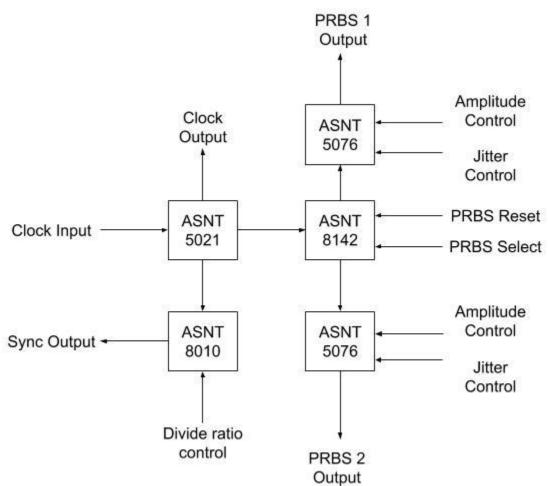


ASNT_PRBS20B_1


18Gbps PRBS7/15 Generator Featuring Jitter Insertion, Selectable Sync, and Output Amplitude Control

- Broadband frequency range from 20*Mbps* 18.0*Gbps*
- Minimal insertion jitter
- Fast rise and fall times
- Two PRBS data output, jitter insertion capability, and output amplitude control from 0V to 1V peak to peak.
- Up to 155ps delay variation on each output
- Differential clock output
- 50% duty cycle for sync output on all divide ratios
- Sync output and Clock input are AC coupled on board
- Single positive 3.3V supply

DESCRIPTION

Fig. 1. Functional Block Diagram

The ASNT PRBS20B 1 is a broadband 2⁷-1 or 2¹⁵-1 PRBS generator intended for test, prototyping, microwave, and communication applications. The amplitude and phase are adjustable on both differential outputs. There is jitter/phase shift insertion onto either differential output with a bandwidth up to 500 kHz. Output amplitude on both PRBS outputs varies from 0V to 1V single-ended peak to peak. A single-ended clock from 10MHz to 18GHz with an amplitude as low as 50mV peak to peak may be applied to the clock input. A buffered differential clock output is provided. A differential Sync Output divides an input clock from 1 to 256. When using an oscilloscope, the Sync Output triggers the oscilloscope. The system is capable of triggering for an eye diagram for PRBS7/PRBS15 or PRBS7 pattern with divide ratios 127 or 254, and it uses an on-board PRBS reset switch to preset the generator avoiding the all zero state lock-up. An on-board Pattern Select switch selects either PRBS7 or PRBS15.

The ASNT_PRBS20B_1 board contains nine Emerson SMA connectors MFG PN: 142-0761-881, 500hm transmission lines to the device, and power supply decoupling networks on the evaluation board. Power is supplied through a two-pin MOLEX connector P/N: 39-28-1023.

Eye diagram

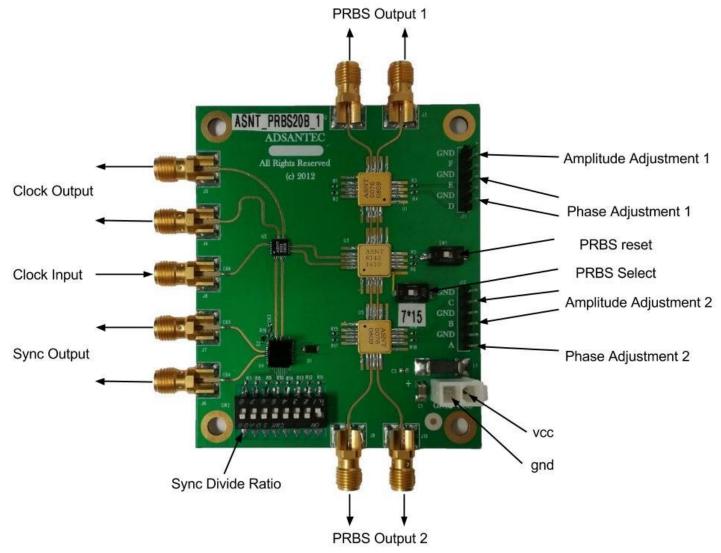
pattern pattern

SYNC OUTPUT

The Sync Output can be configured to output any divide ratio from 1 to 256 from the clock input. It contains eight switches that represent 8 bits. The LSB starts at SW1 and the MSB ends at SW8. The binary value of zero gives a decimal n value of 256. Increasing binary values increases the decimal value n.

- VCVLL · VCVLL ·		
	DIP SW #	n Divide Ratio
DC/ D5, D4 91 97 99 99 910 5	87654321	II Divide Ratio
R6 R5 R4 R3 R7 R8 R9 R10	$0\ 0\ 0\ 0\ 0\ 0\ 1$	1
	00000010	2
	$0\ 0\ 0\ 0\ 0\ 0\ 1\ 1$	3
"0"	00010000	16
J7 2 2 2 2 2 2 2 2 2 3 1 1 1	•	
	•	
	01111111	127
1 3 3 3 3 3 3 3 3 3 1	11111110	254
	00000000	256

ABSOLUTE MAXIMUM RATINGS


Caution: Exceeding the absolute maximum ratings shown in Table 1 may cause damage to this product and/or lead to reduced reliability. Functional performance specified over the recommended operating conditions for power supply and temperature only. AC and DC device characteristics at or beyond the absolute maximum ratings are not assumed nor implied. All min and max voltage limits are in reference to ground.

Parameter	Min	Max	Units
Supply Voltage (VCC)		+3.6	V
Power Consumption		8	W
RF Input Voltage Swing (SE)		1.0	V
Case Temperature		+90	°С
Storage Temperature	-40	+100	°С
Operational Humidity	10	98	%
Storage Humidity	10	98	%

Table	1.	Absolute	Maximum	Ratings
1 0000		1105011110	11100/00/00/00	10000050

TERMINAL FUNCTIONS

OPERATION

1. Measure 50*Ohms* on all nine SMA connectors referenced to vcc.

(NOTE: On board AC coupling prevents direct measurements on all connectors. These values must be measured at the trace referenced to **vcc**.)

2. Measure 390*Ohms* on headers D and E referenced to vcc. Measure 2.2*kOhms* on headers B and C referenced to vcc. Measure 150*Ohms* on header A and 2*kOhms* on header F referenced to vcc.

(A deviance of up to 10% in these values is within specification.)

- 3. Connect the board to a power supply set to 0V with a current limit of 2.2A.
- 4. Slowly increase the power supply to + 3.3V. Nominal current is 2.1A.
- 5. Apply a DC coupled clock to the Clock Input up to $18GH_z$ with peak-to-peak amplitude from 50mV to 1V. Note: Clock input is AC coupled on-board.
- 6. Connect the PRBS outputs AC coupled to a 50*Ohms* terminated oscilloscope. Place 50*Ohms* AC coupled terminations on all unused input/outputs.
- 7. Set PRBS Select to the ON position to select PRBS15 or OFF to select PRBS7.
- 8. Turn PRBS reset to the ON position and then back to the OFF position to reset the PRBS generator.
- 10. To add jitter or change phase on the PRBS 1 output, apply a 2.1*V* to 3.3*V* to header pin E and float (do not connect) pin D to decrease phase shift. Apply 2.1*V* to 3.3*V* to header pin D and float (do not connect) header pin E to increase phase shift.
- 11. To change the amplitude on the PRBS 1 output, apply a positive voltage ranging from 2.5V to 3.3V to header pin F. The amplitude control for the PRBS 1 output is single-ended only.
- 12. To change the amplitude on the PRBS 2 output, apply a voltage ranging from 2.5V to 3.3V to header pin B and float (do not connect) pin C to increase amplitude. Apply a voltage ranging from 2.5V to 3.3V to header pin C and float (do not connect) header pin B to decrease amplitude.
- 13. To add jitter or change phase on the PRBS 2 output, apply a positive voltage ranging from 2.1V to 3.3V to header pin A. The delay control for the PRBS 2 output is single-ended only.

ADSANTEG

Ultra High-Speed Mixed Signal ASICs

Offices: 310-530-9400 / Fax: 310-530-9402 www.adsantec.com

ELECTRICAL CHARACTERISTICS

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS
vee		0		V	External ground
VCC	3.1	3.3	3.5	V	
I _{VCC}	1.7	2.1	2.5	A	
Power		6.9		W	
Operating Temperature	-25	50	85	°C	
		Clock I	nput		
Frequency	0.02		18	GHz	
Single-Ended Swing	50	400	1000	mV _{PP}	
		Clock C	output		
Frequency	0.02		18	GHz	
Single-Ended Swing	570	600	630	mV _{PP}	
Common Mode Level	vcc -0.35	vcc -0.3	3 vcc -0.25		
Additive Jitter			5	ps	Peak-to-Peak
Duty Cycle	45	5 50	55	%	For Clock Signal
		Sync O	utput		
Frequency	0.01		18	GHz	
Single-Ended Swing	570	600	630	mV _{PP}	
Rise/Fall Times	15	17	19	ps	20%-80%
Duty Cycle	45%	50%	55%		For clock signal
	I	PRBS_1	Output		
Single-Ended Voltage Level	475	500	525	mV _{PP}	
Common Mode Level	vcc -0.3	vcc -0.2	25 vcc -0.2	V	When Tn is NC
Duty Cycle	45	50	55	%	

ELECTRICAL CHARACTERISTICS (CONTINUED)

PARAMETER	MIN	ТҮР	MAX	UNIT	COMMENTS	
PRBS_2 Output						
Single-Ended Voltage Level	475	500	525	mV_{PP}		
Common Mode Level	vcc -0.3	vcc -0.25	vcc -0.2	V	When Tn is NC	
Duty Cycle	45%	50%	55%			
	Amp	olitude Con	trol			
Differential Swing	-2.85		2.85	mV_{PP}		
Common Mode Level	vcc -0.5	vcc -0.25	VCC	V		
Amplitude Variation	0	500	1000	V		
Bandwidth	0.0		100	kHz.		
Jitter Control						
Differential Swing	-3.8		3.8	mV_{PP}		
Common Mode Level	vcc -0.5	vcc -0.25	VCC	V		
Phase Shift Control	0		155	ps		
Shift Stability	-12		12	ps	0-125°C	
Bandwidth	0.0		500	kHz		

REVISION HISTORY

Revision	Date	Changes		
1.5.2	08-2020	Updated Ohmic Values, Sensitivity and Electrical Characteristics		
1.4.2	02-2020	Corrected Header Control Voltage Values		
1.3.2	07-2019	Updated Letterhead		
1.3.1	04-2019	Added P/N and connector description to board description		
1.2.1	08-2015	Correction Operation #2. Current limit increased to 2.2A from 2A		
1.1.1	04-2015	Changed page 1 picture and terminal function picture		
		Changed Ivcc current and power		
		Corrected Operation #6		
1.0.1	04-2015	Initial Release		